Proteolytically Inactive Insulin-Degrading Enzyme Inhibits Amyloid Formation Yielding Non-Neurotoxic Aβ Peptide Aggregates

نویسندگان

  • Matias B. de Tullio
  • Valeria Castelletto
  • Ian W. Hamley
  • Pamela V. Martino Adami
  • Laura Morelli
  • Eduardo M. Castaño
چکیده

Insulin-degrading enzyme (IDE) is a neutral Zn(2+) peptidase that degrades short peptides based on substrate conformation, size and charge. Some of these substrates, including amyloid β (Aβ) are capable of self-assembling into cytotoxic oligomers. Based on IDE recognition mechanism and our previous report of the formation of a stable complex between IDE and intact Aβ in vitro and in vivo, we analyzed the possibility of a chaperone-like function of IDE. A proteolytically inactive recombinant IDE with Glu111 replaced by Gln (IDEQ) was used. IDEQ blocked the amyloidogenic pathway of Aβ yielding non-fibrillar structures as assessed by electron microscopy. Measurements of the kinetics of Aβ aggregation by light scattering showed that 1) IDEQ effect was promoted by ATP independent of its hydrolysis, 2) end products of Aβ-IDEQ co-incubation were incapable of "seeding" the assembly of monomeric Aβ and 3) IDEQ was ineffective in reversing Aβ aggregation. Moreover, Aβ aggregates formed in the presence of IDEQ were non-neurotoxic. IDEQ had no conformational effects upon insulin (a non-amyloidogenic protein under physiological conditions) and did not disturb insulin receptor activation in cultured cells. Our results suggest that IDE has a chaperone-like activity upon amyloid-forming peptides. It remains to be explored whether other highly conserved metallopeptidases have a dual protease-chaperone function to prevent the formation of toxic peptide oligomers from bacteria to mammals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Enzyme from Aristolochia indica Destabilizes Fibrin-β Amyloid Co-Aggregate: Implication in Cerebrovascular Diseases

Fibrinogen and β-amyloid (Aβ) peptide independently form ordered aggregates but in combination, they form disordered structures which are resistant to fibrinolytic enzymes like plasmin and cause severity in cerebral amyloid angiopathy (CAA). A novel enzyme of 31.3 kDa has been isolated from the root of the medicinal plant Aristolochia indica that showed fibrinolytic as well as fibrin-Aβ co-aggr...

متن کامل

The D-amino acid peptide D3 reduces amyloid fibril boosted HIV-1 infectivity

BACKGROUND Amyloid fibrils such as Semen-Derived Enhancer of Viral Infection (SEVI) or amyloid-β-peptide (Aβ) enhance HIV-1 attachment and entry. Inhibitors destroying or converting those fibrils into non-amyloidogenic aggregates effectively reduce viral infectivity. Thus, they seem to be suitable as therapeutic drugs expanding the current HIV-intervening repertoire of antiretroviral compounds....

متن کامل

CALHM1 ion channel elicits amyloid-β clearance by insulin-degrading enzyme in cell lines and in vivo in the mouse brain.

Alzheimer's disease is characterized by amyloid-β (Aβ) peptide accumulation in the brain. CALHM1, a cell-surface Ca(2+) channel expressed in brain neurons, has anti-amyloidogenic properties in cell cultures. Here, we show that CALHM1 controls Aβ levels in vivo in the mouse brain through a previously unrecognized mechanism of regulation of Aβ clearance. Using pharmacological and genetic approach...

متن کامل

Pulsed hydrogen-deuterium exchange mass spectrometry probes conformational changes in amyloid beta (Aβ) peptide aggregation.

Probing the conformational changes of amyloid beta (Aβ) peptide aggregation is challenging owing to the vast heterogeneity of the resulting soluble aggregates. To investigate the formation of these aggregates in solution, we designed an MS-based biophysical approach and applied it to the formation of soluble aggregates of the Aβ42 peptide, the proposed causative agent in Alzheimer's disease. Th...

متن کامل

Mechanisms of Amyloid-β Peptide Clearance: Potential Therapeutic Targets for Alzheimer’s Disease

Amyloid-β peptide (Aβ) is still best known as a molecule to cause Alzheimer's disease (AD) through accumulation and deposition within the frontal cortex and hippocampus in the brain. Thus, strategies on developing AD drugs have been focused on the reduc-tion of Aβ in the brain. Since accumulation of Aβ depends on the rate of its synthesis and clearance, the metabolic pathway of Aβ in the brain ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013